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1 Introduction: 

Lassa Fever (LF), acknowledged precisely as Lassa Hemorrhagic Fever (LHF), declared as an endemic contagion in some parts of 

West African countries, is spread by Lassa virus (LASV) or Lassa Hemorrhagic Fever virus (LASHFV), belonging to the Arenaviridae 

family. The Lassa fever is a zoonotic infection transmitted to human beings via food items or household products contaminated 

through urine and faeces of the reservoir, Mastomys rats. Human transmission is Lassa fever is occurred by direct contact and 

estimated 80% of infected persons are asymptomatic [1, 2]. Besides the direct contact, laboratory transmission of Lassa fever is also a 

topical issue taking place in hospitals with inadequate sanitization and preventive measures [3]. In drastic cases, Lassa virus mainly 

affect foremost organs like liver, spleen and kidneys along with 1% fatality rate [1].  In case of severe infection profile, expiration, 

maternal death or loss of fetus (during the third trimester of pregnancy) 

usually happen within 14 days of commencement of fatal symptoms. Lassa fever has the incubation period of 6–21 days approximately 

and for symptomatic patients, symptoms like fever, weakness, malaise, headaches, sore throat, vomiting, 
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nausea, diarrhea, swelling of face, abdominal pain, fluid retention in lungs, blood exposure in mouth, nose, sexual organs, GI tract, low 

blood pressure, shock etc are noticeable predominantly [1, 4, 5]. 

The first detection of Lassa fever infection was ensued in the year 1950, however the first confirmed case of Lassa was documented in the 

year 1969, in the town Lassa, situated in Borno state of Nigeria [6, 7]. According to the report of WHO, the largest outbreak of Lassa fever 

up to now was reported in Nigeria in the year 2018 [8]. According to Nigeria Centre for Disease Control and Prevention report, an 

estimated 5669 cases have suspected, along with 832 confirmed cases and 152 death cases from January 1, 2024 to April 14, 2024 [9]. Indeed, 

the number of incidences is higher originally than the reported cases, since in most areas of West Africa the surveillance of the transmission 

could not be performed [10, 11]. There is effective vaccine against Lassa fever until now; Ribavirin is supposed to be an antiviral medication 

against the infection if is prescribed early stages of infection [1]. WHO recommends some preventive measures for community like storing 

grain, foodstuffs in some rodent-proof containers, disposing of garbage regularly away from community, cleaning of households and 

keeping cats and some personal preventive measures like maintaining basic hand, face and respiratory hygiene, safe sex practice, safe 

injection practices, safe burial practices etc. 

 

Mathematical modeling of an infected disease is beneficial to understand the kinetics of the overall disease pattern, course of infection, 

several factors and parameters affecting the dynamics of the disease, and possible control of the infection by means of several control 

strategies. Several mathematical models of Lassa fever have been developed [4, 8, 11 – 15] portraying the transmission stages and 

dynamical traits of infection considering either vector population, or human population or both populations. Some of these models 

employed different preventive strategies, in particular isolation, reducing intrahuman contact and contact with rodents, cleaning of 

environment etc in declining the infectiousness and to control the Lassa fever transmission. A very few models studied the impact of 

memory or another hereditary profile in contagion of Lassa fever [14, 15, 18]. Motivated by these works, in our present study we develop 

a deterministic, compartmental, integer-order mathematical model of Lassa fever transmission by upgrading the existing models of Lassa 

fever contagion proposed by [3, 16, 17]. Furthermore, we upgrade the proposed integer-order model to a Caputo fractional-order model 

incorporating the impact of immunological memory. 

 

Present article is calibrated as follows: Section 2 is comprised of the mathematical modeling of Lassa fever transmission. In Section 3, the 

epidemic system is upgraded to its fractional-order counterpart in Caputo sense. In Section 4, local dynamics of the epidemic system 

around both the steady states is studied. Section 5 is designed with various numerical simulations. In Section 6, conclusions regarding 

comprehensive results are attached. 

 

 
2. Lassa fever model 

Taking into account both the vector (Mastomys rat) population and human population, we proposed an upgraded [3, 16, 17], non–linear 

deterministic, integer-order mathematical model comprising of the transmission dynamics of Lassa fever. We consider five compartments 

as (i) susceptible rats (𝑆𝑚(𝑡)), (ii) infected rats (𝐼𝑚(𝑡)), (iii) susceptible humans (𝑆ℎ(𝑡)), (iv) infected humans (𝐼ℎ(𝑡)) and (v) recovered 

humans (𝑅ℎ(𝑡)), at time 𝑡 (days). Our proposed coupled system of nonlinear system of ODE equations is as follows: 

𝑑𝑆𝑚
𝑑𝑡

= 𝛬𝑚(1 − 𝜃) − 𝛽3𝑆𝑚𝐼𝑚 − 𝜇𝑚𝑆𝑚,

𝑑𝐼𝑚
𝑑𝑡

= 𝛬𝑚𝜃 + 𝛽3𝑆𝑚𝐼𝑚 − (𝛿𝑚 + 𝜇𝑚)𝐼𝑚,

𝑑𝑆ℎ
𝑑𝑡

= 𝛬ℎ − 𝛽1𝑆ℎ𝐼𝑚 − 𝛽2𝐼ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ
𝑑𝑡

= 𝛽1𝑆ℎ𝐼𝑚 + 𝛽2𝐼ℎ𝑆ℎ − (𝛾ℎ + 𝛿ℎ + 𝜇ℎ)𝐼ℎ,

𝑑𝑅ℎ
𝑑𝑡

= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ,

 

with epidemiologically feasible non-negative initial conditions: 

𝑆𝑚(0) = 𝑆𝑚0 ≥ 0, 𝐼𝑚(0) = 𝐼𝑚0 ≥ 0, 𝑆ℎ(0) = 𝑆ℎ0 ≥ 0, 𝐼ℎ(0) = 𝐼ℎ0 ≥ 0,𝑅ℎ0 = 𝑅ℎ0 ≥ 0. 

Here we assume that all the model parameters are positive and their epidemiological descriptions are enlisted in Table 1. The time of 

infection is measured in days. The flow of Lassa fever transmission dynamics is depicted in the Figure 1. 
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Figure 1. The figure is portraying the transmission dynamics of System (1). 

Table 1: Model parameters and their epidemiological descriptions of the System (1) 

Parameters                Definitions Values 

Λm Constant recruitment of rats 500 

Λh Constant recruitment of susceptibles 2000 

β
1  Rate of zoonotic transmission 0.0008 

β
2  Rate of intrahuman transmission 0.0008 

β
3  Rate of rat to rat infection 0.00714 

μm Rate of natural death of rats 0.00038 

μ
h  Rate of natural death of humans 0.00005 

δm Rate of disease induced death of rats 0.0001 

δ
h  Lassa fever induced death of humans 0.00074 

γh  Rate of recovery of humans 0.84 

θ Fraction of new recruitment of infected rats 0.6 

 

3. Fractional-order advancement of the system 

 

Intending to upgrade our proposed integer-order model of Lassa fever [1] into a fractional-order differential equations (FODs) model, 

first we are recalling two widely used definitions of FODs, namely Riemann-Liouville and Caputo derivatives [19–21]. These two 

definitions are mostly used in analyzing real-life dynamical characteristics of a mathematical model like hereditary properties, genetic 

profile, memory etc. In our present work, we implement fractional-order derivatives in Caputo sense to convert our proposed integer-

order model into a fractional one cogitating the huge advantages of Caputo fractional derivatives in solving real-life problems. 

 

Definition 1. [22] Let a function 𝑓 ∈ 𝐶𝑛[0, 𝑝], space of all 𝑛 times continuously differentiable functions in [0, 𝑝]. Then the Caputo fractional-order 

derivative of 𝑓 is defined by 𝐶
0
𝐷𝑡
𝜗𝑓(𝑡) =

1

𝛤(𝑛−𝜗)
∫

𝑓(𝑛)(𝑦)

(𝑡−𝑦)(𝜗−𝑛+1)
𝑡

0
𝑑𝑦, 𝑛 − 1 < 𝜗 ≤ 𝑛 ∈ 𝑁 𝑎𝑛𝑑 𝑡 > 0, 

where 𝛤(. ) is the well-known Gamma function and 𝜗 is the order of FODs. In particular, for 0 < 𝜗 ≤ 1, the above definition could be written as 
𝐶
0
𝐷𝑡
𝜗𝑓(𝑡) =

1

𝛤(1−𝜗)
∫

𝑓(𝑛)(𝑦)

(𝑡−𝑦)𝜗
𝑡

0
𝑑𝑦. 
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Our proposed Caputo fractional-order deterministic model of Lassa fever considering the influence of immunological memory is 

constructed as follows: 

𝐶
0
𝐷𝑡
𝛼𝑆𝑚(𝑡) = 𝛬𝑚

𝛼 − 𝛽3
𝛼𝑆𝑚(𝑡)𝐼𝑚(𝑡) − 𝜇𝑚

𝛼 𝑆𝑚(𝑡),

𝐶
0
𝐷𝑡
𝛼𝐼𝑚(𝑡) = 𝛽3

𝛼𝑆𝑚(𝑡)𝐼𝑚(𝑡) − (𝛿𝑚
𝛼 + 𝜇𝑚

𝛼 )𝐼𝑚(𝑡),

𝐶
0
𝐷𝑡
𝛼𝑆ℎ(𝑡) = 𝛬ℎ

𝛼 − 𝛽1
𝛼𝑆ℎ(𝑡)𝐼𝑚(𝑡) − 𝛽2

𝛼𝐼ℎ(𝑡)𝑆ℎ(𝑡) − 𝜇ℎ
𝛼𝑆ℎ(𝑡),

𝐶
0
𝐷𝑡
𝛼𝐼ℎ(𝑡) = 𝛽1

𝛼𝑆ℎ(𝑡)𝐼𝑚(𝑡) + 𝛽2
𝛼𝐼ℎ(𝑡)𝑆ℎ(𝑡) − (𝛾ℎ

𝛼 + 𝛿ℎ
𝛼 + 𝜇ℎ

𝛼)𝐼ℎ(𝑡),

𝐶
0
𝐷𝑡
𝛼𝑅ℎ(𝑡) = 𝛾ℎ

𝛼𝐼ℎ(𝑡) − 𝜇ℎ
𝛼𝑅ℎ(𝑡),

                                                           (3) 

 

with the same non-negative initial condition (2) and 𝛼 is the order of fractional-order derivatives, defined as the index of immunological 

memory such that 0 < 𝛼 ≤ 1. The epidemiological descriptions of the baseline parameters and their values used for numerical simulation 

are enlisted in the Table 1. The parametric values are collected from [1, 3, 5, 16, 17]. 

 

4. Basic characteristics of the Caputo fractional-order system 

In this section, we investigate the well-posedness of the Caputo-fractional-order system (3) in addition to the non-negative initial 

conditions (2). In this regard, we check the non-negativity of the solution trajectories of the Caputo fractional-order system (3) and their 

uniform boundedness. 

4.1  Non-negativity of solutions 

At first, we consider a set 

Φ = {𝒢(𝑡) ∈  ℝ+
5: 𝒢(𝑡) ≥ 0} where 𝒢(𝑡) = (𝑆𝑚(𝑡), 𝐼𝑚(𝑡), 𝑆ℎ(𝑡),  𝐼ℎ(𝑡),  𝑅ℎ(𝑡)) 

Next, to prove that all the solution trajectories of the Caputo fractional-order system (3) are non-negative and belong to the region 𝛷, we 

take help of the following theorem (established in the work of [23]). 

Theorem 1.   Let us consider that the above defined function 𝑓(𝑡) and its Caputo fractional-order derivative 
𝐶
0
𝐷𝑡
𝛼𝑓(𝑡) both belong to the metric space 

𝐶[𝑝, 𝑞] and the condition 0 < 𝛼 ≤ 1 holds. Then, for all 𝑡 ∈ [𝑝, 𝑞] the function 𝑓(𝑡) would be monotonically increasing if 
𝐶
0
𝑓(𝑡) ≥ 0 and the function 

𝑓(𝑡) would be monotonically decreasing if 
𝐶
0
𝐷𝑡
𝛼𝑓(𝑡) ≤ 0. 

 

Using the Theorem 1, we state the following corollary. 

 

Lemma 1.   Suppose that ℎ(𝑡) ∈ 𝑂[0, 𝑢] and 
𝐶
0
𝐷𝑡
𝛼ℎ(𝑡) ∈ 𝑂 for 0 < 𝛼 ≤ 1. If 

𝐶
0
𝐷𝑡
𝛼ℎ(𝑡) ≥ 0 for all 𝑡 ∈ (0, 𝑢), then function ℎ is non-decreasing and 

if 
𝐶
0
𝐷𝑡
𝛼ℎ(𝑡) < 0 for all 𝑡 ∈ (0, 𝑢), then the function ℎ in non-increasing for all 𝑡 ∈ (0, 𝑢). 

 

Now, using the above Theorem 1 and Lemma 1, we prove the positivity of all the solutions of the Caputo fractional-order system (3). 

 

Theorem 2.  All the solution trajectories of the Caputo fractional-order system (3) along with non-negative initial conditions (2) are positively 

oriented and belong to the region 𝛷 (defined previously). 

 

Proof. From the system of Caputo fractional-order equations [3], it is observed that 
𝐶
0
𝐷𝑡
𝛼𝑆𝑚 |𝑆𝑚 = 0 = 𝛬𝑚

𝛼 ≥ 0,
𝐶
0
𝐷𝑡
𝛼𝐼𝑚|

𝐼𝑚=0
= 0 ≥ 0,

𝐶
0
𝐷𝑡
𝛼𝑆ℎ𝑆ℎ=0

= 𝛬ℎ
𝛼 ≥ 0,

𝐶
0
𝐷𝑡
𝛼𝐼ℎ |𝐼ℎ = 0 = 𝛽1

𝛼𝑆ℎ(𝑡)𝐼𝑚(𝑡) ≥ 0,
𝐶
0
𝐷𝑡
𝛼𝑅ℎ|

𝑅ℎ=0
= 𝛾ℎ

𝛼𝐼ℎ(𝑡) ≥ 0.
 

Thus, for any time 𝑡 ∈ (0,∞), it is obtained that 𝑆𝑚(𝑡) ≥ 0, 𝐼𝑚(𝑡) = 0, 𝑆ℎ(𝑡) ≥ 0, 𝐼ℎ(𝑡) ≥ 0, and 𝑅(𝑡) ≥ 0. Hence, all the solutions 

(𝑆𝑚 , 𝐼𝑚, 𝑆ℎ, 𝐼ℎ , 𝑅𝐻) are positively oriented in 𝑅+5. ◻ 
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4.2   Uniform boundedness of solutions 

Theorem 3.  Every solution of the Caputo fractional-order system (3) with non-negative initial conditions (2) initiating in the region 𝛷 is uniformly 

bounded in 𝑅+5. 

Proof. Firstly, by summing up the first two equations of the Caputo fractional-order system (3), it is obtained that 
𝐶
0
𝐷𝑡
𝛼𝑁𝑚(𝑡) = 𝛬𝑚

𝛼 − 𝜗𝑚
𝛼 (𝑆𝑚(𝑡) + 𝐼𝑚(𝑡))

𝑖. 𝑒. ≤ 𝛬𝑚
𝛼 − 𝜗𝑚

𝛼𝑁𝑚(𝑡),
 

where 𝜗𝑚
𝛼 = 𝑚𝑎𝑥{𝜇𝑚

𝛼 , 𝜇𝑚
𝛼 + 𝛿𝑚

𝛼 }, since 
𝐶
0
𝐷𝑡
𝛼𝑁𝑚(𝑡) + 𝜗𝑚𝑁𝑚(𝑡) ≤ 𝛬𝑚

𝛼  and 
𝐶
0
𝐷𝑡
𝛼𝑁ℎ(𝑡) + 𝜗ℎ𝑁ℎ(𝑡) ≤ 𝛬ℎ

𝛼 . Now, it could be obtained 

𝑁𝑚(𝑡) ≤ (𝑁(0) − 𝛬𝑚
𝛼 )𝐸𝜈(−𝜗𝑚

𝛼 𝑡𝛼) +
𝛬𝑚
𝛼

𝜗𝑚
𝛼 , ∀𝑡 ∈. 

Accordingly, 𝑁𝑚(𝑡) → 𝛬𝑚
𝛼 𝜗𝛼 as 𝑡 → ∞. Now, adding the last three equations of the Caputo fractional-order system (3), we have 

𝐶
0
𝐷𝑡
𝛼𝑁ℎ(𝑡) = 𝛬ℎ

𝛼 − 𝜗ℎ
𝛼(𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅(𝑡))

𝑖.  𝑒. ≤ 𝛬ℎ
𝛼 − 𝜗ℎ

𝛼𝑁ℎ(𝑡)
 

where 𝜗ℎ
𝛼 = 𝑚𝑎𝑥{𝜇ℎ

𝛼, (𝜇ℎ
𝛼 + 𝜇ℎ

𝛼)} since, 
𝐶
0
𝐷𝑡
𝛼𝑁ℎ(𝑡) + 𝜗ℎ𝑁ℎ(𝑡) ≤ 𝛬ℎ

𝛼and 𝐶𝐷𝑡
𝛼𝑁ℎ(𝑡) + 𝜗ℎ𝑁ℎ(𝑡) ≤ 𝛬ℎ

𝛼 . Thus, it could be obtained that 

𝑁ℎ(𝑡) ≤ (𝑁(0) − 𝛬ℎ
𝛼)𝐸𝜈(−𝜗ℎ

𝛼𝑡𝛼) +
𝛬ℎ
𝛼

𝜗ℎ
𝛼 , ∀𝑡 ∈. 

Accordingly, 𝑁ℎ(𝑡) → 𝛬ℎ
𝛼𝜗𝛼 as 𝑡 → ∞. Consequently, all the solutions (𝑆𝑚, 𝐼𝑚, 𝑆ℎ, 𝐼ℎ , 𝑅𝐻) of the Caputo fractional-order system are 

uniformly bounded in the region: 

𝛩 = {𝐻 ∈ 𝑅5: 𝑆𝑚(𝑡) + 𝐼𝑚(𝑡) ≤
𝛬𝑚
𝛼

𝜗𝑚
𝛼 ∧ 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ ≤

𝛬ℎ
𝛼

𝜗ℎ
𝛼} . 

The region 𝛩 is positively invariant and attracting and the well-posedness of the Caputo fractional-order system is proved in this 

manner.  

 

 
5  Steady States and basic reproduction number of the model 

In this Section, we investigate the feasible equilibrium points executed by the Caputo fractional-order Lassa fever system (3) and their 

existence criteria. It is seen that the system possesses two feasible steady states - 

(i) An infection-free equilibrium point - 𝐴0 = (
𝛬𝑚

𝜇𝑚
, 0,

𝛬ℎ

𝜇ℎ
, 0,0), which exists irrespective of any epidemiological condition. 

(ii) Endemic equilibrium point - 𝐴∗ = (𝑆𝑚, 𝐼𝑚, 𝑆ℎ, 𝐼ℎ, 𝑅ℎ), whose existence condition would be studied. 

 

5.1 Basic reproduction number of the system 

With the aim of finding the basic reproduction number of the Caputo fractional-order system (3), we take help of the next-generation 

matrix method [24]. Basic reproduction number, a threshold, is essential to estimate the conditions for spreading of an infection, and to 

predict the future course of outbreak. In this aspect, we construct two matrices 𝐹 and 𝑉 representing the flow of new Lassa fever infection 

and the transition of infection between infected compartments at the infection-free steady state 𝐴0 as follows: 

𝐹 =

(

 
 

𝛬𝑚
𝛼 𝛽3

𝛼

𝜇𝑚
0

𝛬ℎ
𝛼𝛽1

𝛼

𝜇ℎ

𝛬ℎ
𝛼𝛽2

𝛼

𝜇ℎ )

 
 
, 𝑎𝑛𝑑 𝑉 = (

𝛿𝑚
𝛼 + 𝜇𝑚

𝛼 0

0 𝛾ℎ
𝛼 + 𝛿ℎ

𝛼 + 𝜇ℎ
𝛼). 

The basic reproduction number, 𝑅0 (say), is the spectral radius of the next-generation matrix 𝐹𝑉−1 and is computed as 

𝑅0 = 𝑚𝑎𝑥{𝑅𝑚, 𝑅ℎ}. 
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We may express the basic reproduction number, 𝑅0 as the combination of another two thresholds - 𝑅𝑚 representing the control 

reproduction number for rat population and 𝑅ℎ representing the control reproduction number for human population respectively given 

as below: 

𝑅𝑚 =
𝛽3
𝛼𝛬𝑚

𝛼

𝜇𝑚
𝛼 (𝛿𝑚

𝛼 + 𝜇𝑚
𝛼 )
, 

𝑅ℎ =
𝛽2
𝛼𝛬ℎ

𝛼

𝜇ℎ
𝛼(𝛾ℎ

𝛼 + 𝛿ℎ
𝛼 + 𝜇ℎ

𝛼)
. 

 

 

5.2 Existence of endemic steady state 

   The components of the endemic steady state are given as follows: 

𝑆𝑚 =
𝛿𝑚
𝛼 + 𝜇𝑚

𝛼

𝛽3
𝛼 ,

𝐼𝑚 =
𝜇𝑚
𝛼

𝛽3
𝛼 (𝑅𝑚 − 1),

𝑆ℎ =
𝛬ℎ
𝛼𝛽3

𝛼(𝛿𝑚
𝛼 + 𝜇𝑚

𝛼 )

𝛽1
𝛼𝜇𝑚

𝛼 (𝛿𝑚
𝛼 + 𝜇𝑚

𝛼 )(𝑅𝑚 − 1) + 𝛽2
𝛼𝐼ℎ + 𝜇ℎ

𝛼 ,

𝑅ℎ =
𝛾ℎ
𝛼𝐼ℎ
𝜇ℎ
𝛼

 

and 𝐼ℎ satisfies the function 𝐹(𝐼ℎ) = 0, where the function 𝐹(𝐼ℎ) is defined as 

𝐹(𝐼ℎ) = 𝐹(𝐼ℎ) = (𝛾ℎ
𝛼 + 𝛿ℎ

𝛼 + 𝜇ℎ
𝛼)𝛽2

𝛼𝐼ℎ
2 + (

𝛽1
𝛼𝜇𝑚

𝛼 (𝛾ℎ
𝛼 + 𝛿ℎ

𝛼 + 𝜇ℎ
𝛼)(𝑅𝑚 − 1)

𝛽3
𝛼 + (𝛾ℎ

𝛼 + 𝛿ℎ
𝛼 + 𝜇ℎ

𝛼)𝜇ℎ
𝛼 − 𝛬ℎ

𝛼𝛽2
𝛼) 𝐼ℎ −

𝛬ℎ
𝛼𝛽1

𝛼𝜇𝑚
𝛼 (𝑅𝑚 − 1)

𝛽3
𝛼 . 

Accordingly, it is noticeable that 𝐹(0) < 0 while 𝑅𝑚 > 1. Moreover, 𝐹(𝐼ℎ) → +∞ as 𝐼ℎ → +∞. Hence, the endemic equilibrium would 

exist whenever 𝑅𝑚 > 1. 

 

 

Figure 2. The figure is showing the time series evolution in the infected human population of the Caputo fractional-

order system (3)  for different values of immunological memory, α = 0.5, 0.7, 0.9, 1.0 and taking other baseline 

parameter values same as in Table 1. 
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Figure 3: The figure is showing the time series evolution in the infected human population 

of the Caputo fractional-order system (3) for different values of immunological memory, α = 

0.5, 0.7, 0.9, 1.0 and taking other baseline parameter values same as in Table 1.  

 

 

6 Local dynamics of the system 

In this section, we would study the local asymptotic stability of the Caputo fractional-order system [3] around the infection-free 

equilibrium point 𝐴0 = (
𝛬𝑚

𝜇𝑚
, 0,

𝛬ℎ

𝜇ℎ
, 0,0) and the endemic equilibrium point 𝐴∗ = (𝑆𝑚, 𝐼𝑚, 𝑆ℎ, 𝐼ℎ, 𝑅ℎ). 

Theorem 4.  The Caputo fractional-order system [3] of Lassa fever would be locally asymptotically stable around the infection-free equilibrium point 

𝐴0 = (
𝛬𝑚

𝜇𝑚
, 0,

𝛬ℎ

𝜇ℎ
, 0,0) while 𝑅0 < 1; otherwise, instability occurs in the system [3]. 

 

Proof. In order to determine the local asymptotic stability of the Caputo fractional-order system [3] around the infection-free equilibrium 

point 𝐴0 = (
𝛬𝑚

𝜇𝑚
, 0,

𝛬ℎ

𝜇ℎ
, 0,0), first we have to compute the Jacobian matrix of the system [3] at the infection-free equilibrium point 𝐴0 as 

𝐽𝐴0 =

(

 
 

−𝜇𝑚 𝑎12 0 0 0
0 𝑎22 0 0 0
0 𝑎32 −𝜇ℎ 𝑎34 0
0 𝑎42 0 𝑎44 0
0 0 0 𝛾ℎ −𝜇ℎ)

 
 
, 

where the components 𝑎12, 𝑎22, 𝑎32, 𝑎42, 𝑎34 and 𝑎44 are computed as 

𝑎12 = −
𝛽3
𝛼𝛬𝑚

𝛼

𝜇𝑚
𝛼 , 𝑎22 =

𝛽3
𝛼𝛬𝑚

𝛼

𝜇𝑚
𝛼 − (𝛿𝑚

𝛼 + 𝜇𝑚
𝛼 ),

𝑎32 = −
𝛽1
𝛼𝛬ℎ

𝛼

𝜇ℎ
𝛼 , 𝑎34 = −

𝛽2
𝛼𝛬ℎ
𝜇ℎ

,

𝑎42 =
𝛽1𝛬ℎ
𝜇ℎ

, 𝑎44 =
𝛽2𝛬ℎ
𝜇ℎ

− (𝛾ℎ + 𝛿ℎ
𝛼 + 𝜇ℎ

𝛼).

 

It is noticeable that the Jacobian matrix 𝐽𝐴0 possesses three purely real and strictly negative eigenvalues namely −𝜇𝑚
𝛼 , −𝜇ℎ

𝛼, −𝜇ℎ
𝛼.  

Furthermore, the rest two eigenvalues are (𝛿𝑚
𝛼 + 𝜇𝑚

𝛼 )(𝑅𝑚 − 1) and (𝛾ℎ
𝛼 + 𝛿ℎ

𝛼 + 𝜇ℎ
𝛼)(𝑅ℎ − 1). Thus, these two eigenvalues would be  

real and negative or having negative real parts if and only if 𝑅𝑚 < 1 and 𝑅ℎ < 1. Taking help of the Theorem 5 proposed in the  

work of Samui et al. [21], it is seen that |𝑎𝑟𝑔(𝜆𝑖)| = 𝜋 >
𝜋𝛼

2
, 𝑖 = 1,2,3,4,5 and 0 < 𝛼 ≤ 1. Consequently, the Caputo fractional-order  

system [3] is locally asymptotically stable around the infection-free equilibrium point on condition that 𝑅𝑚 < 1 and 𝑅ℎ < 1. ◻ 
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Figure 4: The figure is showing the time series evolution in the recovered human population 

of the Caputo fractional-order system (3) for different values of immunological memory, α = 

0.5, 0.7, 0.9, 1.0 and taking other baseline parameter values same as in Table 1.  

 

 

Theorem 5.  The Caputo fractional-order system [3] of Lassa fever would be locally asymptotically stable around the endemic equilibrium point 𝐴∗ =

(𝑆𝑚, 𝐼𝑚, 𝑆ℎ, 𝐼ℎ, 𝑅ℎ) while 𝑅0 > 1; otherwise, instability occurs in the system [3]. 

 

Proof. To determine the local asymptotic stability of the system [3] around the the endemic equilibrium point 𝐴∗ = (𝑆𝑚 , 𝐼𝑚, 𝑆ℎ, 𝐼ℎ , 𝑅ℎ), first 

we compute the Jacobian matrix of the system [3] about the endemic equilibrium point (EE) as 

𝐽𝐴∗ =

(

 
 

𝑎11 𝑎12 0 0 0
𝑎21 𝑎22 0 0 0
0 𝑎32 𝑎33 𝑎34 0
0 𝑎42 𝑎43 𝑎44 0
0 0 0 𝛾ℎ −𝜇ℎ)

 
 
, 

where we consider 

𝑎11 = −𝜇𝑚 − 𝛽3𝐼𝑚, 𝑎12 = 𝛽3𝑆𝑚, 𝑎21 = −𝛽𝐼𝑚
𝑎22 = −𝛽3𝑆𝑚 − (𝛿𝑚 + 𝜇𝑚), 𝑎32 = −𝛽1𝑆ℎ,
𝑎33 = −𝜇ℎ − 𝛽1𝐼𝑚 − 𝛽2𝐼ℎ, 𝑎34 = −𝛽2𝑆ℎ, 𝑎42 = 𝛽1𝑆ℎ,

𝑎32 = 𝛽2𝑆ℎ − (𝛾ℎ + 𝛿ℎ + 𝜇ℎ), 𝑎42 = −𝛽1𝐼𝑚 + 𝛽2𝐼ℎ.

 

It is seen that the Jacobian matrix 𝐽𝐴∗ have one purely real and strictly negative eigenvalues −𝜇ℎ. Further, the rest four eigenvalues can be 

obtained from the following characteristic equation 

                                                                             𝜆4 + 𝜁1𝜆
3 + 𝜁2𝜆

2 + 𝜁3𝜆 + 𝜁4 = 0,                                                              (4) 

where 

𝜁1 = −𝑎11 − 𝑎22 − 𝑎33 − 𝑎44,
𝜁2 = 𝑎11𝑎22 + 𝑎11𝑎33 + 𝑎11𝑎44 + 𝑎22𝑎33 + 𝑎22𝑎44 + 𝑎33𝑎44 − 𝑎12𝑎21 − 𝑎34𝑎43,
𝜁3 = 𝑎12𝑎21𝑎33 + 𝑎12𝑎21𝑎44 + 𝑎11𝑎34𝑎43 + 𝑎22𝑎34𝑎43 − 𝑎11𝑎22𝑎44 − 𝑎11𝑎22𝑎33 − 𝑎22𝑎33𝑎44  −  𝑎11𝑎33𝑎44

𝜁4 = 𝑎11𝑎22𝑎33𝑎44 − 𝑎11𝑎22𝑎34𝑎43 − 𝑎12𝑎21𝑎33𝑎44 + 𝑎12𝑎21𝑎34𝑎43

, 

Next, we present two propositions to study the local asymptotic stability of the system [3] around the endemic equilibrium. 

 

Proposition 1.  If the four eigenvalues 𝜆𝑖 , 𝑖 = 1,2,3,4 of the Jacobian matrix 𝐽𝐸  satisfies the condition |𝑎𝑟𝑔(𝜆)| >
𝜆𝜋

2
 (apart from the eigenvalue −𝜇ℎ 
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which is already negative), then the epidemic system [3] is locally asymptotically stable around the EE. 

 

Next, we determine the discriminant of the characteristic equation (4) as: 

 

𝛶(𝜑) =

|

|

1 𝜁1 𝜁2 𝜁3 𝜁4 0 0
0 1 𝜁1 𝜁2 𝜁3 𝜁4 0
0 0 1 𝜁1 𝜁2 𝜁3 𝜁4
4 3𝜁1 2𝜁2 𝜁3 0 0 0
0 4 3𝜁1 2𝜁2 𝜁3 0 0
0 0 4 3𝜁1 2𝜁2 𝜁3 0
0 0 0 4 3𝜁1 2𝜁2 𝜁3

|

|

, 

                                                                                               = 𝜁1
2𝜁2
2𝜁3
2 − 4𝜁1

2𝜁2
3𝜁4 − 4𝜁1

3𝜁3
2 + 18ζ1

3𝜁2𝜁3𝜁−27ζ1
4𝜁2
2 + 4𝜁2

3𝜁3
2 + 16ζ2

4𝜁4 + 
                                                                                                    18ζ1𝜁2𝜁3

3 − 80ζ1𝜁2
2𝜁3𝜁4 − 6𝜁1

2𝜁2
2𝜁4 + 144𝜁1

2ζ2𝜁4
2 − 27ζ3

4 + 144ζ2𝜁3
2ζ4 

                                                                                                    −128ζ2
2𝜁4
2 − 192ζ1𝜁3𝜁4

2 + 256ζ4
3 

                                                                                                     

In terms of the discriminant 𝛶(𝜑), we construct the following proposition to study the local asymptotic stability of the system [3] around 

the endemic equilibrium point. 

Proposition 2.   (𝑎) The epidemic system [3] is locally asymptotically stable around the EE if 𝛶(𝜑) > 0, in addition to the conditions (𝑖)  𝜁1 > 0, 

(𝑖𝑖) 𝜁1𝜁2 > 𝜁3, and (𝑖𝑖𝑖) 𝜁1𝜁2𝜁3 − 𝜁1
2𝜁4 − 𝜁3 > 0. 

 

(𝑏) The epidemic system [3] is locally asymptotically stable around the EE for 𝛼 ∈ (0.5, 1), if 𝛶(𝜑) < 0, in addition to the conditions (𝑖) 𝜁1 > 0, (𝑖𝑖) 

𝜁2 > 0, (𝑖𝑖𝑖) 𝜁1𝜁2 > 𝜁3, and (𝑖𝑣) 𝜁1𝜁2𝜁3 − 𝜁1
2𝜁4 − 𝜁3 = 0. 

 

(𝑐) The epidemic system [3] is unstable around the EE for 𝛼 > 2/3, if 𝛶(𝜑) < 0 together with the conditions (𝑖) 𝜁1 < 0, (𝑖𝑖) 𝜁2 < 0, and (𝑖𝑖𝑖) 𝜁3 <

0. 

 ◻ 

 
Figure 5: The figure is showing the time series evolution in the recovered human population 

of the Caputo fractional-order system (3) for different values of immunological memory, α = 

0.5, 0.7, 0.9, 1.0 and taking other baseline parameter values same as in Table 1.  

 

 

7  Numerical simulation 

In this section, we numerically validate our proposed Caputo fractional-order Lassa fever model (3) using the MATLAB software with 

baseline parameter values enlisted in the Table 1.  Intended to capture the dynamics of the Caputo fractional-order model, we vary the 

value of the immunological memory, 𝛼. Indeed, for 𝛼 = 1, the Caputo fractional-order system would shrink to its integer-order 

counterpart. In Figure 2, Figure 3 and Figure 4, the behaviors of the Caputo fractional-order system for different values of the 
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immunological memory, 𝛼 = 0.5,0.7,0.9,1.0 are observed in case of three populations - susceptible, infected and recovered human 

population respectively. It is observed that for higher value of immunological memory, the load of Lassa fever infection would be declined. 

In Figure 5, the global asymptotic stability of the Caputo fractional-order system is depicted in the phase space 𝑆ℎ − 𝑅ℎ − 𝐼ℎ showing the 

gradual declination of the Lassa fever infection for increasing values of immunological memory. 

 

8 Conclusions 

In epidemiology, Caputo fractional-order differential equations are referring to be the most interesting tool in analyzing dynamics of an 

infectious disease, disease pattern, course of infection and future course of outbreak. In our present research study, we formulate a 

deterministic, five compartmental model of Lassa fever taking into account both the human population and rat population. Furthermore, 

we perturb the integer-order Lassa model into a Caputo fractional-order model accounting the impact of immunological memory in 

disease progression, mitigation and curtailing of Lassa fever infection. 
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